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a b s t r a c t

For reliable and safe operation of lithium-ion batteries in electric or hybrid vehicles, diagnosis of the cell
degradation is necessary. This can be achieved by monitoring the increase of the internal resistance of
the battery cells over the whole lifetime of the battery. In this paper, a method to identify the internal
resistance in a hybrid vehicle is presented. Therefore, a special purpose model deduced from an equivalent
circuit is developed. This model contains parameters depending on the degradation of the battery cell. To
achieve the required robustness and stable results under these conditions, the method uses specific signal
intervals occurring during normal operation of the battery in a hybrid vehicle. This identification signal
has a defined timespan and occurs regularly. The identification is done on vehicle measurement data of
tate-of-health

n-board diagnosis
nternal resistance

terminal cell voltage and current collected with a usual vehicle sampling rate. Using the adapted internal
resistance value in the model, a degradation index is calculated by compensating other influences, e.g.
battery temperature. This task is the main challenge, as the impact of the temperature on the resistance,
for example, is one order of magnitude higher than the influence of the degradation for the investigated
lithium-ion cell. The developed estimation and monitoring method is validated with measurement data

s go
from single cells and show

. Introduction

A task that has to be solved for the application of batteries in
ehicles with an electric drive train is the determination of the
ctual state-of-health (SOH) of the battery cells. The knowledge of
he SOH can be used to recognize an ongoing or abrupt degradation
f the battery cells and to prevent a possible failure of the electric
ystem and, accordingly, the vehicle. As the internal resistance of
battery cell is one of the main characteristics that are affected by
egradation, the determination of the SOH can be done by moni-
oring the internal resistance of the battery cell during operation
f the battery. Additionally, the internal resistance of the battery
ells can be used for other purposes, e.g. a short or midterm power
rediction.

Methods for determining the degradation of battery cells usually
se impedance spectroscopy and are carried out under laboratory
onditions [1,2]. As these methods are usually model based, there

re multiple battery models of varying complexity for different
urposes [3,4]. For a vehicle application, these methods are not
pplicable because no laboratory testing equipment is available.

∗ Corresponding author. Tel.: +49 731 50 26308; fax: +49 731 50 26301.
E-mail address: juergen.remmlinger@uni-ulm.de (J. Remmlinger).
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od results and very low computational effort.
© 2010 Elsevier B.V. All rights reserved.

Existing methods developed for the use within a vehicle use fil-
ter technologies to determine the conditions of the battery cells. In
these approaches, the internal resistance is a parameter assumed
to be known. An exception is [5,6], where the states and parameters
are estimated using a dual filter concept. This concept is computa-
tional expensive and can only be implemented on a very powerful
vehicle electronic control unit (ECU). For this reason, methods
requiring only a standard ECU have to be developed.

In this contribution, the internal resistance of a battery cell is
identified on-board periodically with a minimum of processing
power and memory capacity. Therefore, a special purpose model
deduced from an equivalent circuit is used. This model contains
parameters depending on the degradation of the battery cell. To
achieve the required robustness and stable results under these con-
ditions, the method uses specific signal intervals occurring during
normal operation of the battery in a hybrid vehicle. This identifica-
tion signal has a defined timespan and occurs regularly.

To determine the progress of the degradation, various other
influences on the internal resistance besides the degradation of
the battery cell have to be considered. In this contribution, this

task is solved for the investigated lithium-ion cells implicitly by
the chosen identification signals, where the battery conditions can
be assumed to be homogeneous over all cells and the tempera-
ture is therefore measurable by the external temperature sensors.
The developed estimation and monitoring method is validated with

dx.doi.org/10.1016/j.jpowsour.2010.08.035
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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battery and the cell degradation. Therefore, they are time-variant
and change with temperature, state-of-charge (SOC), power
demand, and degradation.

To easily analyze the networks created from resistances and
capacitors, corresponding differential equations are transformed

Rohm

RP

CP

RD

CD
time / s

Fig. 1. Identification signal at start of combustion engine at � = 30 ◦C.

easurement data from single cells and shows good results and
ery low computational effort.

The underlying experiments are presented in Section 2 and the
erived model for the method in Section 3. The developed mon-

toring method itself is described in Section 4. The contribution
oncludes with a summary in Section 5.

. Design of experiment

The presented method is designed for a vehicle on-board appli-
ation. Therefore, recorded data from inner-city driving of a hybrid
ehicle were analyzed and promising sequences for a determina-
ion of a degradation index were selected. These sequences had
o be tested for their ability to indicate the degradation. Thus, the
equences were transferred to a laboratory battery testing system
y setting the measured current as current demand for the testing.

f cells in a vehicle battery are connected in series, this methodol-
gy has the advantage that the current demand does not have to
e scaled at varying cell numbers. The tests were done in a climate
hamber at temperatures of −20 ◦C, −8 ◦C, 12 ◦C, 30 ◦C, and 50 ◦C.

A promising timespan for the on-board determination of the
nternal resistance is the start of the combustion engine of the
ybrid vehicle. The current and terminal voltage measured in the
ehicle for this period are plotted in Fig. 1. The signal has an overall
uration of 2.5 s and is a strong excitation of the battery. Therefore,
he signal is expected to be a good identification signal. Further
dvantages of this signal are its short duration, which guarantees
low identification effort, its unchanging shape, which allows an

dentification with always the same current magnitude, and its
egular occurrence in the driving profile. It also appears at the
eginning of the operation after longer resting periods and allows
n identification of the internal resistance of the balanced battery
ell. Therefore, the signal was included in the testing profile several
imes.

To determine a reference value of the internal resistance, current
ulse signals have been inserted into the testing cycle regularly.
ne of these current pulses and the measured terminal voltage are

hown in Fig. 2. As this pulse is a strong excitation of the battery

ell, it is a reliable reference signal. Resting times with a current
emand of zero were included in the testing cycle before and after
hese current pulses, but also between the vehicle driving cycle, to
llow dynamic effects to decay.
time / s

Fig. 2. Reference signal: current pulse at � = 30 ◦C.

To compare the results of the presented method, the tests were
carried out on a new and a degraded typical 6.5 Ah high-power
lithium-ion battery cell used in hybrid vehicle batteries. The elec-
trical behaviour of these cells is described in [7,8]. The degradation
was done by thermal aging, i.e. the cell was stored at temperatures
over 50 ◦C to accelerate the degradation. This thermal aging can
be seen as approximation to a usual calendaric aging in a vehicle
[9]. After this thermal aging process, the battery cell was subject to
intensive testing. Thereby, the complex internal resistance and the
capacity were determined.

3. Battery modeling

3.1. Main effects represented in a battery model

A general battery model to describe the electrical behavior is
usually derived from an equivalent circuit (EC) as shown in Fig. 3.
The main parts of this EC are an ideal voltage source, an ohmic
resistance and two parallel connections of an ohmic resistor with a
capacitor. The ideal voltage source is representing the open-circuit
voltage and the ohmic resistance the resistance of the materials.
The parallel connections of an ohmic resistor and a capacitor
describe the time-dependent overvoltage occurring at the battery
cell terminal while the battery is charged or discharged. These
parallel connections stand for the effects caused by polarization
and diffusion. The parametrization values of the resistors and
capacitors are depending on the particular operating point of the
UOCV

Fig. 3. Equivalent circuit of battery cell.
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Table 1
Typical ranges for the parameters of the EC for one cell due to operation conditions.
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degraded cell
Ohmic resistance Polarization Diffusion

Gain Rohm 0.2. . .2.5 Rohm 0.5. . .4 Rohm

Time constant – 0.01. . .3 s 4. . .30 s

nto the Laplace domain. For example, a RC-parallel connection
pecifies a first-order low-pass transfer-function (PT1). The param-
ters R and C of the parallel connection can be converted to gain
nd time constant of the PT1 element. The linear equations in the
aplace domain describe the battery behavior only in one operation
oint for fixed parameters. The typical parameter variations of the

nvestigated lithium-ion battery cells within the operating range
re shown in Table 1.

Due to the large variation of the values, the determination of the
egradation dependent part of the change in the internal resistance

s a challenging task. As the degradation has a main influence on
he activity of the electrolyte, the values of the polarization and
iffusion effect are affected by the degradation, which is observable

n enlarged gains and time constants of the PT1 elements.
Furthermore, the term “internal resistance” is not clear defined.

n general linguistic usage, internal resistance usually means the
hmic resistance of the EC, which corresponds with the intersection
f an impedance spectrum of the battery cell with the real axis.
epending on the EC referred to, other definitions are also possible.
s explained in the following section, a separate identification of all
arts of the EC is neither possible nor necessary for the described
ethod in an on-board application. The internal resistance used

n this contribution is approximately a sum of the ohmic resistance
nd the gain of the PT1 element representing the polarization effect.
his internal resistance is degradation dependent.

Temperature, state-of-charge, and current magnitude also affect
he internal resistance of lithium-ion cells. The significance of these
nfluences vary strongly with the battery chemistry. The investiga-
ions in this contribution are based on typical 6.5 Ah high-power
ithium-ion cells for hybride vehicle applications [7]. In the oper-
tion region of a hybrid vehicle, there has been found a negligible
ependence of the internal resistance on the state-of-charge as

ong as no mass transport limitations (i.e. diffusion effects) are
nvolved [7,8]. Like in many other approaches, e.g. [6,10,11], the
ependence of the internal resistance on the current magnitude is
lso neglected. However, the method uses always the same iden-
ification signal at start of the combustion engine, which leads to
omparable values of the model parameters at least for degradation
onitoring. Nevertheless, it is necessary to compensate the influ-

nce of the varying temperature of the battery, as this has immense
ffect on the values of the internal resistance. The solution to this
ask is further described in Section 4.3.

With the described general battery model according to Fig. 3,
he reference pulse signals were evaluated. The internal resistance
alues, i.e. the sum of the ohmic resistance and the gain of the
olarization element, identified at the different temperatures for
he new and the degraded cell are shown in Fig. 4. It is obvious
hat there exists a strong temperature dependence of the internal
esistance, but also a much weaker dependence on the degradation
f the battery cell. From electrochemical impedance spectroscopy
fter the aging, the internal resistance was found to be approxi-
ately 20% higher than the one of the new cell which corresponds
ith the shown results. Due to the temperature dependence, the

nternal resistance enlarges from high to low temperatures with a

actor of 40 and is much more sensitiv to the temperature changes
han to degradation. Therefore, a determination of the degradation
rom the internal resistance is only possible if an accurate temper-
ture measurement is available. These resistance values, according
o the definition of the internal resistance used in this contribu-
temperature / °C

Fig. 4. Identified internal resistance values at several temperatures with reference
current pulse excitation.

tion, are extracted parameter values of an EC as shown in Fig. 3.
Although it is possible to identify all parameters of this EC with the
reference signal, only the sum of the ohmic resistance and the gain
of the polarization element is plotted so that it can be compared
with the estimated values in the on-board application. This has the
additional advantage that these resistance values can be compared
even if the reference signal and the signal in the application have a
different duration as this is the case here.

3.2. Adapted model for an on-board application

For identification of the elements of the general battery cell
model as shown before, the identification signal has to have special
attributes, e.g. an excitation in a wide frequency range. In an on-
board application using only the common signals occurring during
operation, these attributes are not always available. Therefore, an
adapted model for this application is derived.

The identification signal “starting of the combustion engine”
shows a strong excitation of the battery cell but has a short over-
all duration as shown in Section 2. As the general battery model
exists of two PT1 elements with very different time constants and
one time constant much larger than the duration of the excitation
signal, they cannot both be identified with this identification signal
[12].

The behavior of such a stiff system is demonstrated in Fig. 5. The
two linear systems are set up as

G1(s) = 1
1 + T1s

(1)

G2(s) = 1
(1 + T1s)

+ 1
(1 + T2s)

(2)

with the Laplace variable s and T2 = 400 T1, which is a usual ratio for
time constants in battery dynamics. The systems are excited with
a composition of different signals:

u(t) =

⎧⎪⎨
⎪⎩

0 for 0 ≤ t < 1
− sin(2�t) for 1 ≤ t < 2
0 for 2 ≤ t < 4
1 for t ≥ 4

. (3)
Both system outputs equal each other for the sine wave input
but differ in the step response. As the identification signal in the
application is similar to the sine wave, it is obvious that not the
whole general model can be determined. Again, that identification
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Fig. 5. Comparison of a stiff system (T2 = 400 T1) with an akin system (T1).

ffort is not necessary to be done here because the internal resis-
ance used in this contribution is a sum of the ohmic resistance
n the gain of the polarization effect. Instead, a simplified model is
sed neglecting the diffusion effects. Furthermore, the ohmic resis-
ance is integrated into the remaining PT1 element. This is possible
ecause the time constant is not considerably larger than the sam-
ling time of the measurement data. Although not being a general
escription of the degraded cell, this simplified model is suitable for
n on-board monitoring method with dynamic excitation, since its
arameters are still degradation dependent.

The simplified model has to be expressed in a digital realization
or model identification and the computation on the vehicle ECU.
or this reason, the model is transferred from the continuous-time
requency domain (Laplace domain) to the discrete-time frequency
omain (z-domain). In the z-domain, the model behavior can be
nalyzed at a defined sampling time. For the purpose of model
dentification, the z-domain equation can be transformed in a
iscrete-time difference equation that is linear in its parameters.
hese parameters can be estimated with a least-squares algorithm.

The resulting z-domain equation for the simplified battery
odel is

(z) = U(z) − UOCV

I(z)
= b1z−1

1 + a1z−1
. (4)

This equation equals the time-discrete difference equation

d,k = −a1ud,k−1 + b1ik−1 (5)

ith the sample marker k and ud = u − uOCV. That means the two
arameters a1 and b1 must be estimated from the time-series sig-
al of terminal voltage after subtraction of the actual open-circuit
oltage (OCV) and the current. This can be done by a linear param-
ter estimation method as the parameters appear in a linear form
n the equation. From those parameters, the internal resistance can
e calculated by

i(ϑ) = b1(ϑ)
1 + a1(ϑ)

, (6)
eing dependent on the battery cell temperature ϑ.
The explained identification method for the internal resistance

ffers all possibilities to be implemented in an on-board identi-
cation system. This implementation and the calculation of the
egradation index are explained in the following section.
Sources 196 (2011) 5357–5363

4. On-board monitoring algorithm

4.1. Demands on an on-board monitoring algorithm

A method monitoring the resistance has to meet specific
requirements for being applicable in vehicles. This was taken into
account in the development of this method. As neither special
testing hardware nor expensive sensors are available in the vehi-
cle environment, the method works with regular recorded signals
which are necessary for a safe operation of the battery system any-
way. The measurements in vehicles are done with a relatively high
sampling time and are affected by the reduced accuracy of the sen-
sors. Therefore, the implemented algorithm has to be adapted for
this high sampling time which is done through model adaptions as
explained before.

For the computational methods, limiting factors are the process-
ing power and the memory capacity of the electronic control unit
(ECU). On the one hand, the applicability of the method is guaran-
teed by the special point in time used for the measurement of the
identification signal and through the adapted model. The limited
amount of data points used for the identification ensures little iden-
tification effort as well as the adapted battery cell model containing
only few parameters. But on the other hand, it also depends on
the used techniques for solving every single task of the monitoring
algorithm as explained in the following.

4.2. On-board determination of the internal resistance

The identification of the internal resistance is done with the spe-
cial identification signals of terminal voltage and current at the start
of the combustion engine of the hybrid vehicle with the adapted
model described in Section 3.2. The parameters of this linear model
can be identified using a linear least-squares identification algo-
rithm [13].

The identification problem is of the form

yk = mT
k� + ek with (k = n + 1, . . . , n + N). (7)

In this case, the model output yk is the time-series signal of the
terminal voltage after subtraction of the OCV, mk consist of the
delayed output signal and of the input signal current of the cell,
the parameter vector � is formed as [a1 b1]T, and ek is a poten-
tially occurring additional disturbance, e.g. measurement noise.
This identification can be performed in one single step, but in this
case larger arrays have to be handled and a matrix inversion must be
calculated. Therefore, a regressive formulation of the linear least-
squares algorithm is used [13]:

Pk = Pk−1 − Pk−1mk[1 + mT
kPk−1mk]

−1
mT

kPk−1 (8)

kk = Pk−1mk[1 + mT
kPk−1mk]

−1
(9)

�k = �k−1 + kk[yk − mT
k�k−1]. (10)

The algorithm starts with predefined values for the parame-
ter vector �0 and the covariance matrix P0 at k = 1. Afterwards,
new values for �k and Pk are calculated iteratively for the com-
plete data set using the correction term kk up to k = N, with N
the number of data points. �0 can be set to zeros or near to the
expected identification value. There has not been found a depen-
dency of the identification result on the starting parameters as long
as P0 is selected large enough to allow a variation of the parameter

vector.

The internal resistance can be calculated from the parameter
vector using Eq. (6). Furthermore, the model can be used for other
purposes as short-time power predictions. For this application, the
model adaptions to the identification signal have to be regarded. A
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and filtering (D) of
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ig. 6. Identified internal resistance values at several temperatures with excitation
tart of combustion engine.

ower prediction is only possible in scenarios in which the oper-
tion signal has similar dynamics as the excitation signal used for
odel identification due to the neglected diffusion effect.
The results for the recursive identification are shown in Fig. 6.

he values for the internal resistance are plotted against tempera-
ure for a new and an degraded cell. The values for the cells show a
arge temperature dependence but also a degradation dependence.
he overall characteristic of the identified resistance-temperature
ehavior is comparable to those found with the complete model
or the sum of ohmic and polarization resistance shown in Fig. 4.
here can also be found only a small variation of the identified
nternal resistance values at one temperature except for the values
t −20 ◦C, suggesting a good robustness of the method. The larger
ariance at −20 ◦C presumably occurs because of the varying, not
onstant inner battery temperature influenced by the internal heat
roduced on-load due to the internal resistance.

.3. Temperature compensation and calculation of a degradation
ndex

To express the degradation in a numerical value, a degradation
ndex kd is calculated. It specifies the degradation state of a battery
ell with respect to its internal resistance independent of the actual
ell temperature of the measurement. For a new cell, the degrada-
ion index is 1 and increases with the internal resistance during
peration.

For the calculation of the resistance dependent degradation
ndex, the temperature dependency of the determined internal
esistance values has to be eliminated. Therefore, a characteristic
urve

i,new(�) = a e−b� + c (11)

ith positive parameters a, b and c is fitted to the resistance val-
es Ri,new and the corresponding temperatures � of the new cell to

etain an reference curve for the temperature dependency of the
nternal resistance. The form of Eq. (11) is chosen because of the
emperature dependence following an Arrhenius law [14] and the
urve accurately meets the data points. The curve is plotted in Fig. 6
or the new cell (black line).
Fig. 7. Operation chart of monitoring algorithm.

The calculation of the degradation index kd is now performed
by solving the equation

Ri,act = kdRi,new(�act) (12)

for kd with the actual values Ri,act and �act. In other words, the scal-
ing factor between the theoretical resistance value of the new cell at
the actual temperature and the actual internal resistance is calcu-
lated as degradation index. The actual cell temperature �act can be
assumed to be known if only resistance estimates after long resting
periods are used. Then, the cells are balanced and have the same
temperature as the ambience, which can be measured accurately
enough. For an on-board realization, the characteristic curve of the
new cell is stored in a look-up table with an appropriate amount of
nodes to retain all intermediate values through linear interpolation.
The degradation index kd for the degraded cell was determined to
1.18 and equals almost the increase of the internal resistance of
20%. The scaled curve for this degraded cell is also plotted in Fig. 6
(gray line).

To calculate the degradation index, it is necessary to know the
characteristic curve of the internal resistance over temperature for
the new cell. It can either be obtained by measuring the charac-
teristic for every cell before the first operation in a laboratory, or
by using one defined characteristic for all cells if they do not differ
significantly from this reference.

4.4. Overall scheduling of the monitoring algorithm

The monitoring method is summarized in Fig. 7. The data acqui-
sition is only done at the start of the combustion engine for a short
duration. The method does not require the data to be processed
instantly, an idle time of the ECU can be used to perform the evalu-

ation of the data. The measured terminal voltage and current signal
as well as the actual temperature can be stored without using much
memory. This data acquisition is repeated on every start of the com-
bustion engine after a longer resting period of the battery, resulting
in measurements in a balanced state of the battery cell. Therefore,
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[5] G.L. Plett, J. Power Sources 161 (2006) 1356–1368.
data set

Fig. 8. (A–D) On-board application of the monitoring algorithm.

he measured temperature equals the real inner temperature of
he battery. As the temperature has a great effect on the calcula-
ion of the degradation index from the internal resistance, which is
dentified using a low-effort recursive least-square estimator, this

easurement must be as accurate as possible. The calculated degra-
ation index is filtered, evaluated for an increase or a limit violation,
nd finally stored for further runs of the algorithm.

The application of the presented method on testing data from
he laboratory is shown in Fig. 8. More than 200 data sets of the
dentification signal at the start of the combustion engine were
ecorded for a new and a degraded cell. The data sets of every single
ell were randomly arranged. For the pairs of values consisting of
emperature (plot A) and internal resistance (plot B), the degrada-
ion index (plot C) is calculated using (12). The degradation index
or each of the two cells is almost constant with only few out-

iers caused by an inaccurate determination of the identification

oment. As only two different states of degradation were avail-
ble in measurement data, the degradation index changes abruptly
hen going from the new to the degraded cell. To remove the effect
Sources 196 (2011) 5357–5363

of the outliers and to give the degradation index a smooth appear-
ance, a low-pass filter was applied to the values in plot C. The result
is shown in plot D. The filtered degradation index now is flat, but
shows a slower increase (from data set 220 to 350) due to the
filter dynamics instead of the instantaneous change in the mea-
surements. That means that abrupt changes can only be observed
with some delay due to the filter dynamics. This is no constraint
because the degradation in the vehicle is expected to show a slow
progression, i.e. the prompt change from the new to the degraded
cell is a worst-case scenario.

As the used filter can be a first-order low-pass filter, only the
recent degradation index and not the whole history of data points
or identification signals has to be stored. To recognize a possible
failure, a limit defining the faultless operation region can be set up
and compared with the calculated degradation index to advice the
driver to have the battery system checked for possible failures. An
example limit of 1.1, which is a serious degradation, is outlined
in plot D of Fig. 8. Despite the worst-case scenario, the limit is
exceeded by the filtered degradation index already after less than
25 data sets from the degraded cell.

If the impact of the operation mode is to be analyzed, the history
of the degradation index should be stored. In connection with load
and power profile, it can give a conclusion how different operation
affects the degradation of the battery cells.

5. Conclusions

In this contribution, a method for the on-board determination
of an internal resistance dependent degradation index in a hybrid
vehicle was presented. The internal resistance is defined using an
equivalent circuit and approximately incorporates the ohmic resis-
tance and the polarization effect of a battery cell, which are not SOC
dependent for the investigated cell type. The equivalent circuit was
adapted to the identification signal, which is a terminal voltage and
current measurement of low duration at the start of the combus-
tion engine of the hybrid vehicle. Since this signal shows always a
similar current profile, taking special care of the parameter depen-
dence on current magnitude is not necessary in our algorithm.
From the identified parameters, the internal resistance is calcu-
lated. Furthermore, a method to separate the different effects of
temperature variation and degradation by intelligent data selection
is presented. Using this method, a degradation index can be deter-
mined, which can be postprocessed to receive a smooth, robust
index. All presented methods were developed with the main focus
on the implementation of the algorithm in an on-board ECU. The
algorithm proves low computational effort and results in a robust
monitoring of the battery cell with the demonstrated degradation
index.

As the influence of the temperature of the battery cell is as high
as demonstrated, further research will be done on exact determi-
nation of the inner cell temperature also in dynamic load scenarios,
when the sensor signals are not reliable anymore due to tempera-
ture gradients in the cells.

References

[1] F. Huet, J. Power Sources 70 (1998) 59–69.
[2] U. Tröltzsch, O. Kanoun, H.-R. Tränkler, Tech. Messen 71 (2004) 509–518.
[3] S. Buller, Impedance-Based Simulation Models for Energy Storage Devices in

Advanced Automotive Power Systems, Shaker, Aachen, 2003.
[4] U. Tröltzsch, Modellbasierte Zustandsdiagnose von Gerätebatterien, VDI Ver-

lag, Düsseldorf, 2006.
[6] G.L. Plett, J. Power Sources 161 (2006) 1369–1384.
[7] D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, D.U. Sauer, in:

Proceedings of 12th Ulm ElectroChemical Talks, J. Power Sources, 2010, p. 57.
[8] D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka-Guth, D. Sauer, J. Power

Sources 196 (2011) 5356–5363.



Power

[

[

J. Remmlinger et al. / Journal of
[9] E.V. Thomas, H.L. Case, D.H. Doughty, R.G. Jungst, G. Nagasubramanian, E.P.
Roth, J. Power Sources 124 (1) (2003) 254–260.

10] F. Zhang, G. Liu, L. Fang, in: IEEE International Conference on Robotics and
Automation, 2009, pp. 1863–1868.

11] C. Barlak, Y. Ozkazan, in: International Conference on Electrical and Electronics
Engineering, 2009, pp. II-101–II-105.

[

[

[

Sources 196 (2011) 5357–5363 5363
12] E. Hairer, G. Wanner, Solving Ordinary Differential Equations: Stiff and
Differential-Algebraic Problems, 2nd ed., Springer, Berlin, 2002.

13] L. Ljung, System Identification: Theory for the User, 2nd ed., Prentice Hall, Upper
Saddle River, 1999.

14] B.Y. Liaw, E.P. Roth, R.G. Jungst, G. Nagasubramanian, H.L. Case, D.H. Doughty,
J. Power Sources 119–121 (2003) 874–886.


	State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
	Introduction
	Design of experiment
	Battery modeling
	Main effects represented in a battery model
	Adapted model for an on-board application

	On-board monitoring algorithm
	Demands on an on-board monitoring algorithm
	On-board determination of the internal resistance
	Temperature compensation and calculation of a degradation index
	Overall scheduling of the monitoring algorithm

	Conclusions
	References


